Mechanical Properties: strongth, hardness, ductility, brittlevess, targhness, stiffness, & impact registronce Mfg. Proporties: constability, machinability rating, machining speeds & feeds

Physical Properties: density, M.P., Hemal conductivity, specific heat, & coeff of Hemal expansion Optical Properties: transproncy apacity, color, R.I., pleodraism, birefrigence, dispusion, entiredian

Acoustic Props: sound /reflection / transfer

Atomic Props: atomic mess/mmber (neght

Chemical Props: pH / reputivity / surace terpion & oney

Electrical Props: corpocitance promitting Morgnetic Props: Conie temp / penneability

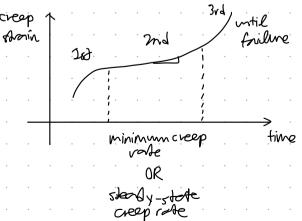
Wishes Vs Reality: Strong materials -> samplan, ductile -> delicate

Alloy & Composites: combination of > 2 metals & > 2 tapes of materials (motals, polymers, & ceramics)
Bronze/Bross/Card Iron Vs. Laminar/fiber-reinforced/perticulate composites

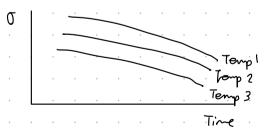
Allays: corrosion resistance, strength, lighter, thermal leterational compatability, durable composites: strength-to-weight ratio, durability, design flexibility, conf-effective

Tensile Tests wechnical test that meanies response of a moserial to a stretching love.

shess-showin -> pulled antil failure, clarged in measured


used for motorful solution, Q.C., pradual sevelopment

extrinsic properties: reloses to how much of the nuterial is present "Intrinsic propadies

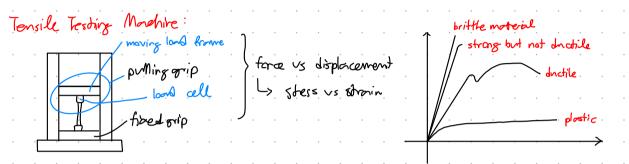

Engineering Shess: $\sigma = F/A_0$, force per cross-sectional orea (MPa) intrinsic propamont of withstandable force before failing

Engineering Strain: $E = (L-L_0)/L_0 = \Delta L/L_0$, % change in length of moderial intrinsic prop., mittess; amount of detarmation when subjected to external land.

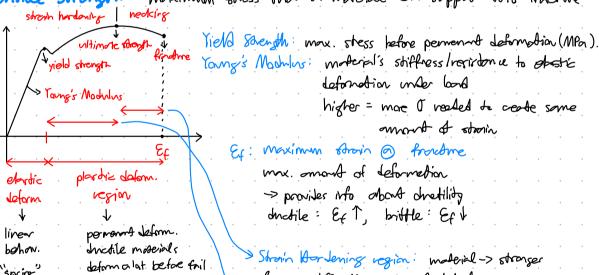
Creep: time-dependent deformation of a moderal while under an applied land < yield Arongth occurs mostly of clarifed temp

Shess inplue test: similar do creep terdity lost w/ higher stresses /orlungs due until failine

Engineering Stress Strain ossmes cross-sectional near stays constant (not true in b/c it t he to elastic & plandic deformation).

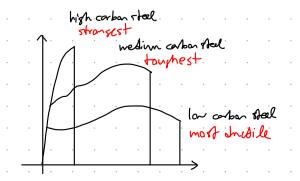

True Stress - Strain Curve applied load / adnal cross-sectional orea

Tensile Test (How to)


Select the material -> cut the material to ASTM's size & Angre avoid damage -> place in grips of universal dester & pull until faiture

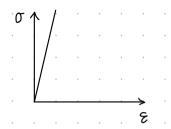
Why tenrile test? -> moderal solution, Q.C., product levien & development, & retining probotypes

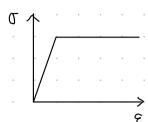
ASTM: American Society for Testing & Moderials ASTM D882: in the form of thin sheeting (film < 1.0 mm thick)


Shongth orbility of a mederial to vesist deformation under external locals Tensile Strength: maximum stress that a material can support who tractive stress hadaing necking

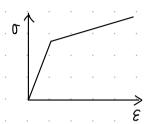
> Showin Hardening region: material -> stronger I more difficult to be strotched.

Neekiz Resia instaid reaks until frime flatter results region = easier to pull most into


Toughness: orbibity to obsorb every & plantically defarm who fracturing I must be both strong & ductile Area under O-E curve.



Ductility: ability to Broth particulty before frontwing


experimental variations: dangers that affect varies of experiment (temp, strain rate, spacinen geometry, lackly direction)

Perfectly elastic: fractures votter than yield to plattic flow; brittle materials

Elastic & Perfectly Plastic: Elastic & Strain Hardening Materials behaves like mollen deepe! Most another metals behave this very when headed to sufficiently high temp. Wen cold worked

Machanical Properties From Tensile Tests

Strength: resist deformation under external loads

Hordness: resistance towards percotration/scratching L> compression text

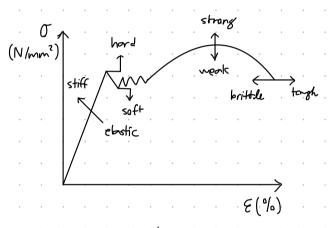
after ebstic vonge's exceeded.

Stiffness: restatione of a moderial to deformation under external loads is app. to elasticity E.

Toughress: ability of a moterial to obserb energy & deform plantically before fracturing.
opp. of brittleness. Area under 0-8 curve

Brittleness: tondancy of a moderial to fractive upon application of stress; app. of toughness. fractives was significant deformation

Elasticity: orbitity of a moterial to reduce to its original shape offer Josomation it is a longth of elastic region


Plasticity: orbility to underso permenent deformation who breakings a length of plastic region

Malleability: obility to be defined under compession who crowking.

Cohesian: ability to raint separation of its particles

Fatigue: tendency of failure under cyclic landing

Creep: tondring of deformation under constant land overtime.

Stiff (steeper) / elastic (shallow) Hand (higher)/soft (lover) Strong (Ttorsile F) / weak (necks forst) tecrs easily

Brittle (low torrile F, brooks bot) / tough (form maked deform. hefore lorcalking).