Powder Metallurgy:

fine powdered materials are blanked, pressed into a desired shape, & herted to bound surfaces

- small intricate parts. W. high presision

- greater flexibility & control

- near next shape properties of interest

- toilined parasity.

flow rate apparent density compressibility green strongth

Mechanical properties: high shorth / wer & fortigue resistance Physical properties enother bear transfer / fluid flow Corrosion resistance: some PM moterials us allays. Biocompatibility some PM materials medical Implify surfampility: I moterial worstes due to nearnest shape

Advartages:

Complex Shopes, wide moterial selection (wetal /motal-ceromic), tailored porosity (filtration devices), mass production, cost effective

Higher Mitial tooling costs (complex lies/undls), limited part sizes (smaller), anisatropy (props depend on pressity directions), process complexity, sindering limitations

Process / Stages;

- 1. Powder into: fire netal posticles via ortamization, milling, or demical reduction
- 2. Mixing / Blanding: homogenizing diff pander for desired properties.
- 3. Compacting: pressity ponder mixture into a shape wold under high P.
- 4. Sidering: herding (NOT melting) the ponder to bond particles (1 strongth/density).

Starting Powders:

-> dient impact on final product, tailoring most props, optimizing process efficiency

- · Particle size (packing landy, flounds: lity, sintering below)
- · Particle shope (comparation efficiency, filml microfornitine)
- · Surface over (faster sintering / but also axidization)
- · Chemical composition (mot props/potential impurities).
- · Flowarbility (dimensional accoracy)
- · Compressibility (final part dimensional accordacy)

MeH Atomization:

disintegrades molden metal into five draplets, I rapidly solidifying them into individual powder particles

- 1. Molten metal in a funce / crucible
- 2. High-velocity ons jets (argan) impact mother stran, breakly them into posides
- 3. Droplets rapidly solidifies in flight due to large surface area exposed to cooling gos
- .4. Collected powder is sieved to achieve desired size dist.

Advantages over atto pander-uff methods:

Uniform & spherical shape (efficient parating & compaction), wide material range, fine particle size, prity & cleanliness (minimizes oxidization/contamination)

Rapidly Solidified Powders: > 105 K/s, significantly faster than comentional methods, resulting:

Microcrystalline: extremely fine grains (nanometer scale)

Amorphous: lacking any lange-range crystalline order (glassy).

novel most props (enhanced strongth, hardness, wear/corrosion resistance, magnetic props), processing benefits (lower sintering temp & shader time)

Applications:

high-performance components, magnetic materials, biocompatible materials.

Techniques:

Gas atamization w/ high cooling rates, Melt-spinning, Plasma spraying, Sputter deposition

Wet Mixing:

- improved mixing efficiency, reduced anot generation, tailored functionalities (enhancement sohents).
- move complex pracess, podertial compostability issues blum liquids & pawders, costs whemissions & drying processes

Mechanical Method:

Milling: grinds bulk moderals into powder using various mills; precise control over particle size/shape; suitable for brittle metals

Chemical Methods:

Chemical Reduction: metal axides/solts converted into powder through demical reaction; wide most range, but could be complex.

Electrolytic Methods:

Electrodeposition: deposits metal ions onto a cathode, forming pander particles is high parity/quality but limited production node & patential shapes.

Factors of Selecting Powder Production Methods Desired moderial, required powder characteristics, production val I cost, environmental considerations.

Powder Mixing & Blending: homogeneous dist. of various comp, impacting final product's performance

sufficient diffusion during sintering 5> uniform chemistry wet/dry mixing

Mixing Methods:

Tumbling: rateding drams or tumbles mix powders through gravity & friction; simple or large boddh blands

Shear Mixing: utilize impellers/paddles to create tentulance to promote mixing; quick homogeneous blands

Fluidized Bed Mixing: susponds pander in a stream of oir -> uniform, degradation-less mixing.

Ribban Blenders: ratesting helical ribbans gently fold & blend pawders; for Royalle pawders

Cone Blenders: V-shaped comes w/ counter-rotating arms promote gentle tumbling & blanding; large butdles / varying densities

- Simpler & potentially cheaper (no liquids), wider most compatibility (no reativity concerns), minimal anvironmental impact (no waste - water / salvent emissions).
- Risk of electrostatic charge build-ups (iniformity V), anot generation.

Powder Compacting: loose powder is transformed into a shaped object under high pressure: this determines the final shape/density/green strongth of PM product.

Common Compacting Techniques:

Die Pressing: punder is compressed within a rigid die convity using punches; precise control over shape I dimensional accuracy; various shapes & volume

Cold Isostatic Pressing (CIP): applies mitam hydrostatic pressure from all directions in a flexible mold; achieves high density & minimizes internal stresses: complex/hear-net shape

Hot Isostatic Pressing (HIP): combines (IP w/ elevated temps, enhancing densification & microstructure; high-perf. comp. - superior properties.

Sequence: Factors: compacting P., filling method, Inbricants, powder props., die design.

- 1 Cycle Start: equip initialized, sensors calibrated, safty checks.
- 2. Die Positioning: lower punch moves into initial position, ready for power filling; preheat possibly.
- 3 Powder Charging a metered amount of powder dispensed into die cavity; filling method ensures uniform dist. I density control.
- 4. Love Punch Movement applies initial, controlled pressure to compact the pawder loosely.
- 5. Main Compaction upper punch applies high P. to adhieve desired density
- 6. Dwell Time: optional; maintaining P. for set time can onhonce bonding
- 7. Pressure Release: gradual decompression avoids residual stress & part dags
- 8. Upper Punch Withdrawal + 9. Part Ejection moves up for part ejection lower punch pushes 1
- 10. Die Cleaning & Preparation: clean & Imbricated

Green Strongth:

Strength in shaped powder before sintering: crucial for handling/moving delicate shapes & performing secondary processes (e.g. machining)

Factors influencing G.S.

Compacting Pressure (high P > high GS)
Particle Interlocking: shape & size of parts
Lubricants: can reduce G.S., weakens bonds.

Effects on powder shope:

Strength & Hardness: denser part, stronger Dimensional accuracy: min shrinkage Parasity: improves comosim residence