Unlock Delicate Materials:

chemical & laser-based techniques: fragile mater. e.g. glass/thin films for microelectronics/medical devices

Non-traditional Machining:

Processes that remove materials by various techniques involving mechanical, thermal, electrical, or chemical energy (ar combinations) but do not use a sharp cutting tool in the conventional sense

-> micromachining, nerospace industry, rapid prototyping

Pros: enables higher production complexity & material selection conquer hardness

Conquer Hardness:

readily machine superalloys, ceramics, diamonds unlike traditional processes

Longer Tool Life.

some eliminate direct tool contact, reducing wear/tear/production costs

Complex Features:

non-contact methods to create sharp corners / thin walls, impossible w/ transitional tools.

Micro - Precision:

tolerances in micro range e.g. microfluidic devices / intricate turbine blades

Electric Energy

Electrochemical Machining (ECM):

Utilizes a shaped tool electrode & electrolyte flow to dissolve workpiece, replicating tool shapes anodic dissolution: mat from workpiece (t) -> cathode tool (-) in an electrolyte bath; flow carries off depleted mat.

Advantages

High Precision, Stress-Free Machinhy, Hard Mat. Compatibility (eg. Ti), Environ. F.

Limitations

Limited M.C. (conductive mont.), Electrolyte. Maintenance, Tool Wear.

Electrochemical Deburring (ECD):

Utilizes same method as ECM to remove burns & sharpe edges.

Advantages

High Speed, Precision, Versotility (not & structure), E.F.

. Applications

Medical Devices (surgical tools), Electronics Industry.

Electrochemical Grinding:

Combines ECM w/ abrasive action: abrasive slurry flow both tool electrode (as a grinding wheel) & workpiece.

Advantages us traditional grinding

Faster Mat. Removal, 1 Efficiency, Wide M.C.

Mechanical Energy

Ultrasonic Machining (USM):

A pizaelectric transducer converts electrical energy into high frequency vibrations, which are transferred through a slander tool immersed in an abrasive slurry - errodes material through onipping & grinding

Advantages

Material Verscatility (hard mat.), Complex Geometries (thin walls), Minimal Heat Generation (preserves prop.), Environmentally friendly.

Disordion tages

Slower Process, Tool Wear

Waterjet Cutting (WJC):

Pressured water (up 55,000 psi) is focused through a narrow nozzle, directly erroding workpiece material through erosion 4 faitigue.

Advantages:

Material Versatility, Clean Cutting, Complex Geometries, Environmentally Friendly

Limitations:

Lower Accuracy, Water Consumption, Safety Precautions Abrasive Waterjet Cutting (AWJC):
An abrasive feeder introduces fine-grained particles

An obvasive feeder introduces fine-grained particles into compational WJC, eroding wider range of mat. w/ higher efficiency

Advantages over WJC:

1 Cutting Pawer/Speeds, Mort. Comportibility

Considerations

Surface Finish, Abrasive Selection, Cost

Abrosive Jet Machining (AJM):

Like AWJC, but uses gas (compressed oir) instead of water & uses Al2O3 & SiC as abrasive ports. -> chipping / grinding

Advantages

Ultra Precise (smaller nozzle), Wider Mat Compatibility, Minimal Heat Gen., Environ F.

Limitations.

Slower Cutting Speed (Lower P), Limited Depth of Cut (efficiency 1), Cost

Thermal Energy Processes (TEPs):

Leverages heat/light to vapanize/molt/erade materials: hard/brittle/exatic mont.

Electric Discharge Machining (EDM):

Utilizes rapidly recurring electrical discharges (sparts) by a dielectric fluid -> melts/vaporizes workpiece into shape of tool electrode

Variations:

Die Sinking EDM (DSEDM):

most common, emplays shaped tool electrole for complex 3D features

Advantages:

Complex 3D Geometries, Hord M.C., Minimal Contact

Challenges:

Electrode Wear, Surface Finish, Heat-Affected Zone (HAZ: affect props.)

Wired EDM (WEDM):

Utilizes a thin, electrically charged wire (bross or copper) as tool electrode, guided by CNC.

Advantages:

Ultra-Precise Marchining (2D namou cuts), Camplex Geometry (profiles & consels), Hord M.C., Min. Contact /stress

Challenges

Wire Breakage, Slaver Process, Surface Finish.

Micro EDM (MEDM):

Miniature tool electroles (down to 20 microns) & specific formulated dielectric fluids.

Advantages

Unmatched Precision, Hard M.C., Minimal HAZ, Non-contact Maching.

Challenges:

Complex Setup/Expertise, Slower Process, Tool/Electrode Wear.

Plasma Arc Machining (PAM):

Vtilizes constricted, high-velocity jet of ionized gas (plasma) gen by an electric arc -> melts & romove mat. (11,000°C ~ 30,000°C)

Advantages:

Material Versatility (most conductive Mat & some nan-cond), Fast Cutting Speeds, Clean Cutting, Non-Contact Mfg.

Challenges:

HAZ, Surface Finish, Safety Concerns

Laser Beam Machining (LBM):

Utilizes a highly focused laser beam to deliver intense thermal energy: melts/vaporize/ablates

Operations.

Laser Contting:

high-power laser for cutting

Laser Engraving:

low-power laser for texturing surfaces

Laser Abrasion:

romane thin layers / surface cleaning

Laser:

Light Amplification by Stimulated Emission of Radiation

- · converts electrical energy into a highly cohorant light beam
- · monochromatic (single unvelopeth,), highly collimated (light mays are almost perfectly parallel).

Advantages

Unmatched Precision, Material Versatility, E.F., Non-Contact Machining

Challenges

High initial investment, HAZ, Safety Concerns

Electron Beam Machining (EBM):

Emplays a highly focused beam of electrons, melting/vaporizing mat.

Advantages:

Unmotched Precision, Exceptional Material Versatility, Minimal HAZ, Deep Drilling Capabilities

Challenges:

High Initial Investment, Vacanm Environment, Safety Concerns

Etchants: potent chemical solution that selectively dissolves unwanted most; typically acidic/alkaline/axidizing

Types.

Acidic (for motals, FeCl3 /HNO3)

.Alkaline (metals/non-Ms) .NaOH->silicane, KOH-> glass

Oxidizing (semiconductors) H2O2 & H2SO4 mixtures

Chemical Machining (CHM):

Employs chamical solutions (etchants) to selectly dissalve unwanted materials.

-> etching rate: chemical comp., temp., & agitation

Steps:

- 1. Design & Preparation.
- 2. Masking: apply photoresist
- 3. Pattern Transfer: exposure w/ photomasks
- 4. Etching: etchant bath dissolves mat.
- 5. Demasking & Cleaning romove residual eachints
- 6. Inspection & Finishing

Variations

Maskant - Based CHM:

resist material (protective maskant) to shield/protect wanted areas from etchant booth

Maskant:

Liquid Photoresist: (light-sensitive, patterned through photolithography) & high vesolution

Film Mask: pre-cut film made of polymer; for simple shape / large val. mfg.

Enamels/Spray: brushed/sprayed liquid resists: flexible & good authorian

Solid Maskants: sheet mont. (rubber/plantic)
for thick sections / complex geam

Photochemical Machining (PCM): emplays light-sonsitive resists for pattern drasfer w/ photolithography

Electropolishing: romoves material smoothly though electrochemical