Casting

Pour molten material -> mold) create complex shapes -> solidify -> near-net-shape) w/ high dimensional accuracy

Material Removal

Subtracts material to achieve final form

Deformation

Bending, stretching, & twisting; no removal of material

Consolidation

Powdered/small particles -> fusing -> solid form

Casting Mastery Steps

Mold Making: sand/ceramic/metal Melting. metal heated to M.P. -> molton

Pouring: molten metal -> mold

Solidification: metal cools & takes mold's form

Mold Removal: reveal solidified part

Finishing Touches: cleaning, polishing, & inspection

Advantages of Molding

Complex Shapes: geometries & internal cavities High-Dimensional Accuracy: tight tolerances & consistency Material Options: aluminum ~ steel; diverse ENGR needs Cost-Effectiveness: repetitive parts , minimal waste

Disadvantages of Molding

Surface Finish rougher vs machining/forging/steps? Strength Limitations: internal parosities / strength V us wrought forms

Dimensional Tolerances: tight tol. = 1 cost.

Design Constraints: mold designs can limit geometries

. Vs other shaping processes.

Safety Problems + Environmental Problems

Casting Terminalogies

Molding Material: sand, ceramic, or metal

Flask: rigid frame holding molding material.

Cope & Drag: top (cope) & battom (drag) of flask Core: inserts placed within mold to create cavities

Mold Cavity: empty space within mold; defines final costing shape

Riser: open (exposed to air) & blind riser; reservair of molten metal feeding casting during solidification, compensating for shrinkage.

Gating System: channels guiding malten metal; pouring cup->cavity. Pouring Cup entry point for moltan metal into the gating system

Spruce: main vertical channel in gating channel

Runners. harizontal channels dist, molten metal to diff. mold parts

Gates: final channels connecting runners to mold cavity Parting Line: seam where cope & drag meet

Draft: slight taper on mold walls / easy removal of costing

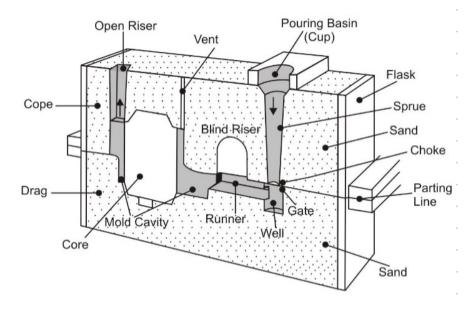
Casting: final solidified form

.(a). Open Mold: container in the shape of desired part

-> simple design / low production volumes

-> e.g. sand costing, investment casting (bumant stage)

(b) Closed Mold: mold geometry is more complex & requires gosting system (passageway) leading into the cavity


.-> higher P: denser casting & finer surface finishes

-> complex shapes & high production volumes

-> e.g. Die costing & pressure costing.

Role of the Mold -> defines final shape / surface finishes / solid process

Pattern: master template defining casting shape -> mold material depends on casting complexity / surface finish / production vol. -> successful mold desired shape, minimizes defects, & efficient metal flow.

Expandable & Permanent Mold Processes

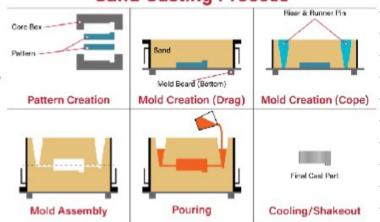
Expandable:

- mold destroyed after each costing cycle
- · law ~ medium production volumes.
- · e.g. sand / investment / plaster mold casting
- · Pros 1 flexibility for shape changes, I initial costs
- · Cans 1 per-unit cost, dimensional accuracy & w/ each use

Permanent:

- · mold rensed for multiple cycles
- · high production values of identical parts
- · eg. die/pressure/centrifugal costing
- · 1 praduction rates & dimen accuracy, I long term cost
- · 1 initial mold cost, flexibility 1.

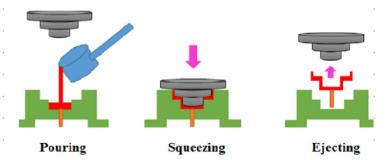
Types of Casting Processes


Sand Casting (The Classic Canvas)

Pros

highly adaptable for diverse shapes & sizes, cost-effective for law-medium production val., excellent for creating intenal cavities w/cores as:

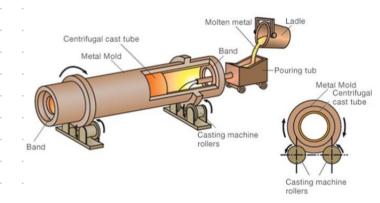
lower dimen. accuracy us perm. molds, rougher finishes/need machining, mold destroyed wheath use


Sand Casting Process

Squeeze Casting (Squeeze Casting)
applies external pressure to mald during solidification
Pros:

superior dimon, accuracy & finish us other methods, onhanced mechanical props. / pressure-induced solid, high-strongth & wear-resistant applications.

specialized equip. I mald design needed, limited to specific shapes compatible w/ this wellhod. Cons

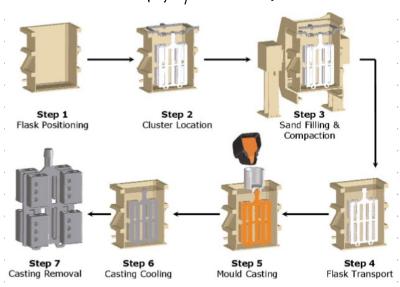


Centrifugal Costing

spins malten metal into cylindrical shapes w/ exceptional density & uniformity
Pros:

strong homogeneous cylindrical shapes, minimize intenal defeuts I gas porosity high production vol. for repetitive parts

cylindrical geometries only, specialized equip. I mald design needed.


Lost-Foam Casting

expendable polystyrene patterns (varishes)

-> leave behind hallow cavities (filled by metal)

cost effective (mold-making/material romal), complex internal geometries/near-net shape, no draft angles required

limited surface finishes, material limit (reactions w/ polystyrone foam), I dimon acc.

pouring ladle

pouring basin

cooling water

melt

mold

solidified surface

rolls

Complex, non-cylindrical shapes w/improved internal properties.

Cons:

specialized equip & mold design needed, limited archievable shapes vs. contribugal costing.

Pouring basin

Cope Casting

Semicentrifugal Casting

sand casting + centrifugal casting

centrifugal force -> density benefits.

Continuous Casting malten metal river -> bars, rads, & beams

high production rates, minimal mat waste, excellent dim consistency & internal Q.C., wide range of shapes / material categories

high initial cost:
equip & cont. production,
limited to specific geometries:
cont. withdown
precise temp control
& process monitorly.

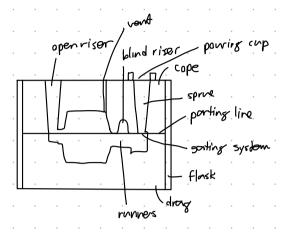
Investment Costing

intricate wax patterns -> metal sculp-wes

exceptional dimen. accuracy & finish, wide range of material compatibility: high M.P. alloys, mold expansion during burnout: minimal draft angles.

Cansi

1 costs & lead time us after methods, delicate wax, smaller part sizes due to mold complexity.



Solidification Process

Gas Parasity:

tiny air bubbles trapped within solidifying metal. Shrinkage:

molten metal fed into costing are inadequate.

Open Mold. container in shape of desired part

Closed Mold

more complex mold geometry, needs gating - sydem

Expandable mold: mold destroyed after each cycle; low-med prod. val. permonent mold: mold reused multiple times high val prod. of identical pts.

Melt Spinning:

molten metal -> hair-thin filaments via rapidly ratedinguleels

-> exceptions strongth & unique prop.

-> metallic threads (aerospace/medical).

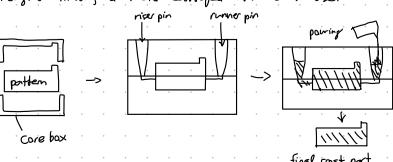
at io induction ejecting molden alloy - nett-spri

Sand Costing:

1. pattern creation (from netal or plastic) via core box 2. packed w/ binder-coated sond to form mold cowity

3 mold halves (cope & drag) are aligned

4. malton metal /allay poved into cavity

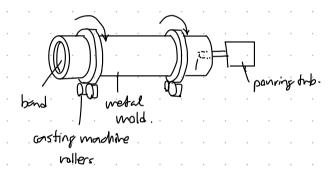

5. cooling & solidification occurs

6. sand mald broken away to reveal arting

7. cleaned & marchised

Characteristics: large-complex shapes, cost-effective for medium-law valume production, & excellent for creating internal cavities w/ cores.

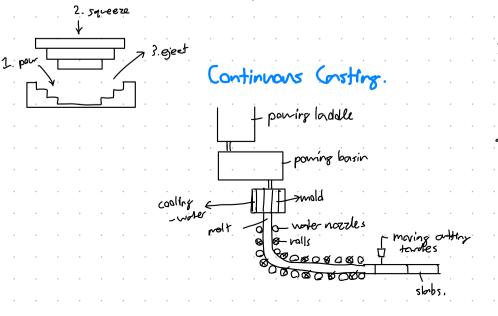
Cons: lower dimensional accuracy us permanent molds, rougher finish, a mold destroyed after each use.


Nucleation.

a tiny flicker that occurs when solidification begins occurs when a net release of energy from liquid

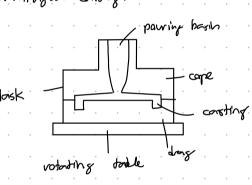
Undercooling = MP - nucleation temp.
each nucleation creates a grain (grain # 1, prop. 1)

Inoculation / Grain Refirement:


Centrifugal Costing: spins molden metal who shape. characteristics: creates strong, high tensity & uniformity. cylindrical shapes, min. internal defects a gov poosity, . 8. good for high vol. production of repetitive pats. . Consi only cylindrical shapes I needs specialized equip 4 mold Lesign.

Die Costing (Squeeze Costing) applies external forces to see mal

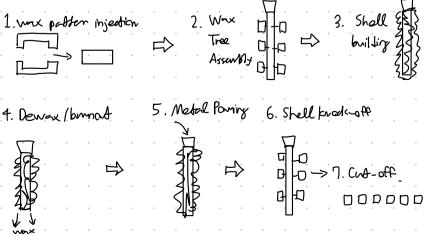
chanderistics: superior dimensional occuracy us all other nothers, enhanced mechanical properties via pressure-induced solidification, used for high-drough a wear registant applications. cas: needs specialized high-pressure equip. I malds,


limited to specific shapes competible w/ its method.

Lost Foam Costing: uses expendable polystyrene pattons that unvises during paring, leaving convities for molden notal to fill characteristic: cost effective by eliminating mold-marking a patterncomand flops, complex irsend geometries (rea-net shape casting), no draft ongles veeded.

cans: limited surface fluish, most, limits (reactions), & dimensional accuracy, can be lower.

> Somicontrifugal Costing: non-cylindrical shapes spon into shape too Cambination of sand carting & centrifugal casting characteristics complex non-cylindrical shapes, improved internal properties (higher density blc of pessive). Cons specialized mold design & anding setup, limited shapes us. centrifyal captry.



More lanhanced control over wall thickness & Internal features us. contribusal

Investment Coasting transforms (intricate wax politics into metal sculptures

characteristics exceptional dimensional accuracy & filish, complex geometries, wide range of most compartibility, win draft angles reesed.

cans: high cost & longer Leave times, delicate wax patterns need careful handling, & limited to smaller size due to maid complexity

Chill Zare: outside surface: fire-needle-like grains (fast cooling)

Columna Zone: middle layer: elangated, columnar grains

L to heat flow (slove cooling).

Equiaxed Zone: heart of consting, spherical grains w/ no crient.

Directional Salidiffication: manipulates host flow to promote preferential grain growth.

Risers: reservoirs of liquid motal that leeds extra metal anto the mold to composite for thrinkage.

blind riser: contained fully in mold early

live riser: neceives last hot metal that anders mold.

Riser Aids: exothermic sleeves that inculates material I cooling rate, Chills: improve efficiency to 1 cooling rate (controll solidification rates) external chills: mass of high-heat capacity and. I cooling speed. internal chills: became a part of carting 1 cooling/solidification.

Defect Elimination: wiform cross-sections, vibbons/fillets improve bosses, avoid shorp corners, etc